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1. INTRODUCTION 

This report i s  the  second quarterly report covering work performed 

under the GSFC contract f o r  study and analysis of s a t e l l i t e  power system 
configurations f o r  maximum uti l izat ion of F e r .  
organized around s i x  major tasks: 

The study a s  a whole is 

1. 

2. 

3. 

4. 

5 .  

6 .  

A survey of the parer requirements of spaceborne equipment i n  
typical unmanned satellites. 

A survey of ty-pical spacecraft e lec t r ica l  parer system designs. 

Collection and presentation of e lectr ical ,  thermal and physical 

data on the individual elements of power systems (i.e., p e r  
control, energy storage, ani p e r  cooditiooing equipment). 

Analysis of typical  space missions t o  be identified by GSFC with 

respect t o  t h e i r  e lec t r ica l  p e r  requirements and t o  the  characterist ics 

of photovoltaic p e r  systems which could meet those requirements. 

Various power systems w i l l  be evaluated with respect t o  efficiency, 
reliability, vei#%, &- i~ terface  cnnslderzticxs. 

Investigation of possible means of standardizing e l ec t r i ca l  power 

requirements of s a t e l l i t e  equipnent as w e l l  as design of power systems 

and t h e i r  components. 

Investigation of the characterist ics of a l ternate  electrical power 

systems using radioisotope thermoelectric generators ra ther  than 
photovoltaic sources. 

The culmination of the first four tasks is obviously Task 5 ,  which w i l l  
include recommendations as t o  how standardization can be furthered without unduly 

compromising efficiency. 

can be achieved w i l l  offer significant advantages with respect t o  cost, development 
t i m e ,  and re l iab i l i ty ;  an attemFt K i l l  be made t o  determine the  point a t  which these 

advantages are outweighed by reduced efficiency, taking i n t o  consideration the various 

types of missions identified by GSFC. 

It is evident that any degree of standardization which 

e 



. 

2. PRESEXI! STATUS OF TIIE STUDY 

It is estimated tha t  by the  end of the second quarter the planned program 
was approximately 45 percent complete. 

first three tasks, w5Lh the following results:  
To date, all ef for t  has been devoted t o  the 

Task 1 Complete, except f o r  additional data regarding experiment 
parer reqdremmts tc  be fkrzished by GSFC i n  uTS;nuary 1966. 
Kesuits are  presented I n  tne first quarteriy report ana i n  

the present document. 

Task 2 Complete. Results are presented in  this report. 

Task 3 Approximately 90 percent complete, w i t h  results presented 

i n  this report. 
Jjnuary 1966 from resul ts  of company-funded research projects 

now under way i n  the f i e lds  of power controls, parer 
conditioning, and batteries. 

The remaining data w i l l  be available i n  

It is  planned tha t  the third quarter w i l l  be devoted primarily t o  Task 4, 
system analysis for  the various missions. 
i n  January 1966. 
attached. 

These are t o  be identified by GSFC 
A schedule revised t o  re f lec t  the GSFC inputs t o  the study is 

It should be noted that the results of the first three tasks are not of 

i n t e r e s t  i n  themselves, since the i r  only m c t i o n  i s  t o  serve as inputs t o  

Task 4. 
nature of the data on which the analysis of Task 4 will be based. 

These results are presented here primarily t o  provide an indication of the 
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3. SruDYREsULTs 

3.1 ANALYSIS OF IxlADS 

As indicated i n  the first quarterly progress report, t he  loads supplied 

by satellite power systems will be considered under three major headings: 

0 ConmnUnications and data handling equipment 

0 Stabil ization and control equipnent 

The data accumulated fo r  the first category w a s  presented i n  the previous 

report. 

experiment data t o  be obtained i n  January 1966. 
The second and t b i r d  w i l l  be covered here, except f o r  the additional 

3.1.; Stabilization and Control Equi-pnent 

Tables I, 11, and I11 summarize the results of the survey of e lec t r ica l  

parer requirements of typical  s tabi l izat ion and control equipnent. 

and control systems typically consist of sensors and reaction devices, connected 

through n set of electronics which provides the required data processing and logic 

functions. Table I shows voltage, voltage regulation, frequency and frequency 
regulation, ripple, duty cycle, and average power f o r  samples of the three types 

of sensor commonly used ( i n e r t i a l ,  optical, electromechanical transducers) . 
Table I1 provides the same data f o r  the  standard types of reaction devices, and 

Table III shows the requirements for  typical digi ta l  and analog signal processing 

and logic units. 

Stabil ization 

A review of these tables indicates the great variety of power requirements 

imposed by s tabi l izat ion and control equipment, not only w i t h  regard t o  voltage 

and voltage regulation, but fo r  ripple and noise as w e l l .  Consultations were 

held w i t h  responsible design engineers t o  determine the reasons f o r  this wide- 

variety.  
because it was available and m e t  the functional requirements of the system, 
and was therefore accepted along with i ts  par t icular  power requirements, 
without any consideration of whether these requirements could be 

simplified by selection of another part o r  component which might also meet the 

It was found tha t  i n  most cases, a component o r  part w a s  chosen 

- 4 -  
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functional requirements. I n  short, t he  lack of standardization results i n  part 
from a lack of attention t o  t h e  matter; it was the consensus of opinion t h a t  i f  

the equipment were t o  be redesigned o r  modified, it would be possible t o  
standardize on a smaller range of e lec t r ica l  parer requirements. 

3.1.2 Scient i f ic  Experiments 

Table I V  l ists the 58 experiments which were reviewed f o r  the present 
study t o  date. They are classified i n  the table i n  nine basic functional 
categories which appear t o  cover the range of nearly d l  present or  anticipated 

s a t e l l i t e  experiments. 

differ only i n  the range of the parameters they measure. 
It can be seen that i n  many cases two experiments may 

It appears that the general practice w i t h  respect t o  power for  

sc ien t i f ic  experiments has been t o  provide the experiment with the nominal 
spazecrzft 5us voltagc, lea%%ng m y  rcydrrd Z O Z Y ~ F S ~ C E ,  Fxersioc,  o r  edditional 

regulation t o  be performed within the experiment. 
def ini t ion of interfaces and undoubtedly expedites the overall  program, but at  

the cost  of considerable waste of power. 
that half the  power supplied t o  the experiments has been wasted i n  parer 

conditioning equipment within the experinent package. 

Th i s  practice simplifies the 

It i s  not unreasonable t o  estimate 0 

Table V summarizes the  e lec t r ica l  pmer requirements f o r  each of the  

experiment packages l isted.  

will be available during the next quarter, but from the  data shown-here it is  

c l ea r  that the var ie ty  of requirements i s  greater than f o r  the s tabi l izat ion and 

control equipment. 
requirements differ so s l igh t ly  (for example, different  experiments require 

5, 6, 7, 8, 9, and 10 vo l t s  respectively) that it seems very probable that some 
standardization would be possible. 

I t  i s  hoped that additional data f o r  t h i s  tab le  

Not only is there a wide range, but i n  some cases, the 

From t h i s  cursory review it is  evident that the standardization of 

p e r  requirements f o r  s c i en t i f i c  experiments should be investigated i n  

considerable detail.  

quarter of the s tudy w i l l  be t o  define feasible and reasonable standard 

voltages and power characterist ics f o r  sc ien t i f ic  experiments. 

It is planned that part  of the work during the th i rd  

- 8 -  



CLASSIFICATION OF MERIMENTS 

I. Radio Frequency 

1) 

2) 

#%01 Radio Astronomy - 2.5 mc cosmic noise 

#5002 V L F  Propagation - 0.2 -100 kc 

3 )  

4) 

5)  

6 )  

Range and Range Rate 2270 m c  

#PC-l.O5 R a d i o  Propagation - Stanford 

#4917 - V I 3  Noise and Propagation 0.2 t o  100 kc. 

&9l8 - Radio Astronoxqf 2-4 mc 

11. Audio Frequency 

1) #5OO3 Whistlers and Audio Frequency 
Electromagnetic Waves 500 cps - 18 kc 

111. Magnetic Fields 

#5005 I;ow Frequency mgnetic Field Fluctuations 

#5OO6 Riibidium Vapor Magnetometer - 
Magnetic Field Survey 

#p~-1.02 Magnetometer - GSFC 

Flux Gate Magnetometer 

Spin Coil Magnetometer 

#49lO Low Frequency Magnetic Field 
Variations 0.01 cps t o  3 kc 

#49ll Magnetic Field Strength and Direction 
3 x '  t o  0.14 gauss 

Iv. Plasma Measurements 

1) 

2)  

3 )  Plasma Probe 

4 )  #902 Plasma (Electronstatic Analyzer) 

#PC-l.O3 Plasma Probe - MIT 

#pc-1.08 Plasma Probe - ARC 

100 ev t o  200 Kev 

#go3 Plasma (Faraday Cup) 100 ev t o  10 Kev 5 )  

OGO-c 

OGO-c 

OW-c 

Pioneer 

OGO-A 

om-c 

OGO-c 

OGO-C 

Pioneer 

A b l e  V 

Able V 

OW-A 

OGO-A 

Pioneer 

Pioneer 

A b l e  V 

OGO-A 

OGO-A 

9 



CLASSIFICATION OF MPERIMENTS (Cont . ) 

V .  L i  ght Frequencies 

1) #50l2 Airglow and Aurora Photometer om-c 
2)  #5013 Ipmn Alpha and U.V. Airglow 1216-15502 00-c  

0 0 - c  

4) #5019 Ionosphere Composition and Solar U.V. Flux 0 0 - c  

5)  #5020 Solar U.V. Emissions 170-1700 8 QCG-r 

6) #919 Geocoronal Wn-Alpha  Scattering (12168) OGO-A 

7)  f ig20  Gegenschein Photometry OGO-A 

V I .  Par t ic le  Radiation 

1) #5008 Law Energy Proton - Alpha Telescope 
Protons 0.5 - 4n mo'? - n$ka 2-16c) E€*"- nnn n VUV-L 

2 )  #5009 Galactic and Solar Cosmic Rays 40 mev - 1 bev 00-c  

3 )  #5OlO Corpuscular Radiation - Electrons 40 kev 
and > 120 kev om-c 

4) #5011 Low Energy Trapped Radiation and Auroral 
Par t ic les  10 - 100 kev electrons, 100 kev t o  
10 p,rgf,ozs, 19 L e v  t= 10 m\r +-+-I """al 9 - 1 - - - *  I L U  0m-c 

5 )  #5OO7 Cosmic Ray and Polar Region Ionization ow-c 
6 )  #5017 Neutral Particle Measurements (density, temp) ow-c 

om-c 
8 )  #PC-l.& Cosmic Ray - Univ. Chicago Pioneer 

9) #~c-1.06 Cosmic Ray - WCSW Pioneer 

10 1 Solid State  Detector - Proton Flux 0.5 - 10 mev Able V 

11 1 Low Energy Scintillometer - Electron and Proton Able V 

12 1 Ion Chamber and Geiger Counter Able V 

13 1 Cosmic Ray Telescope Able V 

14 1 Sc in t i l l a t ion  Spectrometer - Protons Able V 

10 



CLASSIFICATION OF MSERLMENTS (Cant. ) 

V I 1  . 

V I I I .  

Ix. 

Mass - 

s o l a r  Protons 2-100 mev OW-X 

#4gdc - Positron Search and Gamma Rays O M - A  

#4905 - Trapped Radiation (Scint i l la t ion Counter) 
Electrons and Protons 0rA-k 

#4906 - Isotopic Abundance and Galactic Cosmic Rays OW-A 

#907 - Cosmic Ray Spectra and Fluxes 0.3 mev - 4 bev OGO-A 

*%I8 - Trapped Radiation (Geiger Counter) (electrons 
40 kev - 2 bevjiprotons 0.5 mev - 23 mev) OW-A 

#4909 - Trapped Radiation (Electron Spectrometer) 
50 kev t o  4 mev OGO-A 

#49l2 Thermal Charged Part ic les  - electrons and 
ions 0.2 ev t o  1 kev OGO-A 

#4913 - Thermal Charged Part ic les  - + i ons  IQV energy 921-A - 
#4914 - Electron Density by RF Propagation - 
electron density OW-A 

1) #5015 Neutral and Ion Mass Spectrometer 1 - 50 AMU 

2 )  Bo16 Positive Ion Composition 1 - 45 AMU 

3 )  #915 - Atmospheric Composition 1 - 45 AMU 
Positive Ions 

Meteorites 

1) #5018 Micrometeo tial density and mass 
distribution ;Os'3 grams 

2 )  #PC-l.O7 Micrometeoroid Detector - ARC 

3) Micrometeorites 

4) #4916 - Micron Dust Par t ic les  (mass, velocity, 
direction, intensity, time and s p a t i a l  var ia t ions)  

Biological or  Mineral Detectors 

1 ) Microbiological Detector 

OW-C 

E-0-c 

OW-A 

OGO 

Pioneer 

Able V 

OGO-A 

Surveyor 



1 

a a a a a a  v u  
m r n  

0 0 0 0 0 0  0 0 0  0 0 1  I v v u u v u  r l 4 4  r l 4 0 0  

m a l  

1 1 1 1 1 1  I l l  1 1 1 1  I I I I I I  1 1 l 1 1 1  I l l  I I I I I I I I  

3 
j 
.Q 

B 
4 
rl 
d 
0 
U 

C d 
PI rn 



I 

I l l  1 I I 1  1 1 1 1 1 1 1 1 1 1 1  1 1 1  I 1  I 1  1 1 1  

B B 

i? a 

d 
a B 
3 a 

c, 

4 k 
c1 : 

0 u x 

8 
k * 
4 w 



A spacecraft e lec t r ica l  power system can be simply defined i n  terms of 
These are the characterist ics of the parer available on i ts  main power bus. 

basically the following: 

o Voltage 

o Voltage regulation 

o Ripple and noise 

Table V I  l ists these characterist ics f o r  eight different satellites. 

The range of values shown here w i l l  probably cover the reqrirements fo r  most 
future wmnned spacecraft. 
eight systems offers  a promising avenue t o  explore the poss ib i l i t i es  of 

standardization. 

For t h i s  reason, a detailed examination of these 

3.3 ANALYSIS OF MISTING FOUER SYSTEMS 

Figures 1 t h r o w  8 are overall block diagrams sharing the electrical 

p e r  system configuration used i n  each of the  eight satellites l isted i n  
l a d e  V I .  

with batteries, so that i n  general the same f b c t i o n s  must be performed and 

therefore the  same basic elements are found. The differences result t o  a 
large extent from the varying e m p h a s i s  on one or  another requirements, such as the  

very long lifetime recpired f o r  Cornsat, the intermittent heavy load i n  Relay, 

the stress on off-the-shelf designs f o r  V e l a ,  the heavy loads and complex 

e q u i p m t  on MX30 and POGO, and so on. 

rn-r I n  each case the system makes use or' solar ce l l  arrays combined 

Another major influence on e lec t r ica l  power system design i s  the planned 

o rb i t  for the spacecraft. Table VIIindicates the characteristics of the orb i t s  
f o r  the eight satellites discussed here. Orbit character is t ics  a f fec t  power 

system des ip  by dictat ing such important parameters as length and frequency 

of eclipses, integrated radiation flux, and range of angles of incidence of 

solar  radiation. 

and i n  p e r  control requirements. 

These parameters are reflected i n  battery cycling requirements 
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Solar 
A m y  

Receivers Sun and 
Encoder Earth 
Decoders Sensors 
Transmitter Drive 
Despun Antenna 
f t t i t u d e  Control 

System 

Voltage 
shunt Sense 
Regulator  

Low High Low H i &  
Level Level k v e l  Level 
T W T T W T  TWT TWT 

Figure 5 
COMSAT, Electric Parer Subsystem 
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TABLE V I 1  

ORBITAL CHARACTERISTICS 

O r b i t  ? r e a  e t  ed 
T i m  Liz? Time Type - I : . c l ina t ion  

ZOIBAT 24 hr. 5 yr. Q - ~ & o r i a l  - Synchronous 

OGO 3339 min. 1 yr. 31' inclined 

POGO u>4 min. 1 Yr* kiar - o( 
PIONE&R Probe 6 mo. Solar 

RELAY 185.1 min. 1 v- 48O inclined 

VEL4 110 hr. 3 yr. 31' inclined 

TIROS 113.5 min. 6 mo. Polar - 101' 

0-0 

24 



3.3.1 Parer Source Control 

Power source control i s  the term applied t o  the fbnction of regulating 

the voltage and/or current delivered by the solar array. 
delivered by the array must be kept belov a value which might damage spacecraft 

equipment; under certain conditions (emergence from eclipse, for example), the  

array may generate an excessive voltage for a short period of t i m e .  
battery charging must be controlled t o  prevent cfercfrargfng cf t he  t?a+tez5es. 

some cases, it is also desired t o  maintain bus voltage a t  a m i n i m  value even 

when the array voltage has fa l len  below this value. 

In  a l l  cases, the voltage 

I n  addition, 

I n  

The types of regulation used t o  perform these functions are i n  general 

the following: 

o Series dissipative 
o Shunt Dissipative 

o 
Table VI11 suntmarizes the  methods of p e r  s o m e  control used i n  the eight 

satellite power systems considered here. 

Pulse width modulated (bucking, boost, o r  buck-boost) . 

Series Dissipative Regulation. This type of regulation r e w r e s  tha t  

the input voltage be higher than the regulated output voltage. 

occurs at maximum load and maximum voltage difference, as  shown i n  Figure 9. 
can be seen from the figure that w i t h  an array temperature variation of 1 4 5 O C ,  
the dissipation i s  over 100 percent of the load, reducing efficiency below 

50 percent. 
a t t rac t ive  i n  cases where input voltage variation, and the  consequent loss 

i n  efficiency, are small. 

power loss associated with variatioas i n  input voltage. 

Maximum dissipation 

It 

Nevertheless, this relat ively simple type of regulation may be 

Weight of the regulator varies as a f'unction of the 

Shunt Dissipative Regulation. This i s  another dissipative type of 

regulator, and requires tha t  the input voltage (i .e., the  f u l l  solar array voltage) 

be at  leas t  equal t o  the desired bus voltage under the worst conditions. 
advantage of pa r t i a l  shunt regulation as compared t o  a f u l l  shunt or ser ies  dissipative 

The 
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configuration is  that dissipation is  reduced by having part of the solar 

a-ay LL~nt;nuLssfy feeding the bus, with the output of the remaining portion 

r e w a t e d  by the shunt, which dissipates only as much power as  necessary t o  
keep the t o t a l  voltage of the  two portions combined below the specified value. 
The shunt i s  connected t o  a tap i n  the solar array selected i n  such a way that 

a t  m n x i m m  array voltage (ninimum temperature), the shunt elements are  driven 
in to  saturation and the array voltage i s  equal t o  the unshunted series section 

voltage plus the saturated drop of the shunt elements. 

regulation maximum dissipation occurs generally a t  minimum load. 
of Figures 10, 11, and 12, show dissipation of a pa r t i a l  shunt regulator as  

a function of minimum array temperature and minimum load for  maximum array 
temperatures of 805 60, and 4OoC respectively. 

L 

With this type of 

The graphs 

The variation of dissipation w i t h  load becomes much l e s s  pronounced a t  

smaller temperature variations, as does the amount of dissipation required. 
effect  of variation i n  maxinun array temperature (and therefore i n  temperature 

range) can be seen by comparing the three figures. 
c ’ m c  of F i e r e  13 indicates b9 percent &issipattor:   he^ the t e q e r z t u r e  varies 

from a minimum of -6oOc t o  a rather hot 8OoC maximum. 

t o  60 or  4OoC, the corresponding dissipation become 38 or  32 percent respectively 

( f o r  the same m i n i m  temperature). 

The 

For example, the no-load 

If the maximum i s  held 

Figure 13 shows the relation of shunt dissipation t o  e lec t r ica l  load 

on the  system, indicating that  maximum dissipation occurs, as already noted, a t  

minimum load f o r  typical solar array temperature ranges. 
i l l u s t r a t e s  a significant advantage of the pa r t i a l  shunt type of regulation, since 

it shows that losses are  minimum when the load requirements approach the solar 

array power capability. 

This ckiaracteristic 

Pulse Width Modulating Regulation. Regulators of this type u t i l i ze  

p o w e r  t ransis tors  i n  a switching mode with controlled duty cycle t o  effect  the 

voltage regulation, and generally offer  higher efficiencies than do dissipative 

regulators a t  the  cost of a loss i n  frequency response and output impedance. 

approach maximum efficiency as the difference between input and output voltages becomes 

smaller, which makes them suitable f o r  power control functions. 

application the input and output voltages are usually similar and normally do not 

reach a r a t io  as high a s  2:l. 

three types of pulse width modulating regulators: bucking, boost, and buck-boost. 

They 

In  th i s  type of 

The following paragraphs discuss the characterist ics O f  

- 2 8 -  
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As its name suggests, a bucking regulator i s  one for  use where the 

,aput vc tage i s  a l w q  hiwr than the  output voltage. The basic block dlapam 

f o r  this type of regulator is shown i n  Ngure 14. The output voltage I s  related 
t o  the  Input voltage by the rat10 ton/T, where t is the 03 time of the switch 

u.. -,.,a T is cb- u~~ L-A- w A ~  i i i - i ve  period. 

range of output currents under saturated conditions, when losses are a function 

of output current only. 

parer and with output voltage; these curves represent the losses which occur just  
pr ior  t o  f u l l  saturation of the  switching elements, when off time i s  minimum. 

They show that higher efficiencies are  associated w i t h  higher output voltages. 

on 
Figure  15 shows typical  series losses for  a 

Figure 16 indicates how efficiency varies with output 

Variation i n  efficiency with change i n  input voltage (assuming a constant 
. 

output voltage) i s  shown i n  Figure 17 f o r  two output voltages. 

losses as the voltage r a t i o  increases results primarily from greater switching 

losses. 

r a t io s  of 0.75 pounds per w a t t .  

The increase i n  

Regulators of t h i s  type have been implemented with weight-to-load p e r  

A bcost regalator i s  one used wnere the i n p t  voltage i s  always less 

than the output voltage. Figure 18 i s  a block diagram of a constat-frequency 

boost regulator of the pulse width modulated type. 
the bucking regulator, the r a t io  of input t o  output voltage being the r a t i o  of 
T t o  teff, w i t h  T the t o t a l  drive period and toff the off t i m e  of the shunt 

switching element. 

T h i s  case i s  the inverse of 

Msxim efficiency of this type of regulator occurs not when the two 

voltages are the same, but when the  input voltage i s  s l igh t ly  higher than the 

output voltage (not a noma1 condition fo r  t h i s  type of regulator).  "he shunt 
element i s  open i n  this  case, w i t h  a l l  losses confined t o  the ser ies  elements. 
This condition occurs when the power available from the solar  array i s  maximum 

(i.e.,  low temperature in  sunlight). 

of regulstor as  a function of load current, and Figure 20 shows the efficiency 

as a function of output p e r  f o r  varying output voltages. As i n  the  previous 

case, the curves are taken f o r  toff almost equal t o  T, and losses are greater 

Figure 19 shows the losses of t h i s  t y p e  
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f o r  lower voltages. 
efficiency i s  greater f o r  high input/output voltage ratios. 

Figure 21 shows that fo r  t h i s  type of regulation the 

I n  the th i rd  type of pulse  width modulated regulator, the buck-boost 
type, output voltage is related t o  input voltage by the r a t i o  ton/toff, which 

are respect ivelythe On t i m e  and OFF t i m e  of the switch. 
cycle f o r  the switch these two values would be equal and the input and output 

voltages would also be equal. 

boosts the voltage, and the inverse case bucks (i.e., reduces) it. 
i s  a basic block diagram of this type of regulator. 
i s  greatest when the voltage r a t i o  i s  nearest unity, as shown i n  Figures 23 and 24, 
but varies with the  output voltage chosen. 
voltage shows the smallest losses. 

i n  comparison t o  the buck or boost types i s  i t s  lower efficiency (note the lower 
absolute values of efficiencies shown i n  Mgure 24 fo r  a given voltage r a t i o  as 
compared t o  Figures 17 and 21). When t he  regulator i s  i n  the boost m o d e  the  

saturated switch and series choke losses are predominant, w h i l e  i n  the buck mode 

the switch losses predominate. 

A t  a 50 percent duty 

Where ton is greater than toe the circuit 
Figure 22 

I n  this case also, efficiency 

As i n  the other cases, the higher output 
The major disadvantage t o  this type of regulator 

3.3.2 Power Conditioning Equipment 

Design. Power conditioning i s  the generic term used t o  describe the function 

~f accefiing e lec t r ica l  m e r  of specified charsctcrf-stics and altering it t o  

meet the specif'ic requirements of using equipment. The result ing p e r ,  sametimes 
called secondary paver t o  distinguish it from the prime or  unconditioned power, i s  
supplied t o  the using equipment at the required voltages (and with any other 
required characterist ics).  The units used t o  perform this function are ordinarily 

c lassi f ied as inverters,  converters, and transformer-rectifiers. 

functions usually performed by power conditioning equipnent are: 

The three basic 

o Regulation 

o Inversion (DC t o  AC) 

o Rectification (AC t o  E) 

I n  some cases it i s  possible t o  combine regulation and inversion 

i n  the same c i rcu i t ry  by modulating the drive t o  the inverter switching t ransis tors  
so as t o  produce a constant volt-second integral. t o  the inverter transformer. This 
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approach can only be used, hovwcr, with low input voltages and re la t ive ly  

low p e r  levels;  the l i m i t i n g  factor i s  the peak collector voltage and 
current of the switching t ransis tor .  

Where separate pre-regulation i s  necessary, a c i r cu i t  such as that 

In t h i s  desiep, the input f i l ter  serves t o  shown in Figure 25 can be used. 
smooth out spikes and high-frequency t ransients  with large peak values but 

low volt-second intervals,  t o  eliminate input ripple having frequency components 

at  o r  near the modulating frequency of the switching t rans is tor  (which would 

pmdiice Irrrr-freqee~s;~ cxzpzze;;ts ky irrrt,eIwiiyning; these would go through the 

integrator and back t o  the  primary bus without attentuation),  and t o  attenuate I 

AC components produced by t rans is tor  switching. 
c i r cu i t  serves t o  smooth the "chopped" DC, and the diode conducts when the 

t r ans i s to r  is off, permitting continuous current flow tlmough the integrator 

inductor. 

s tor ing e l ec t r i ca l  energy. 

output of the input f i l ter  i n  such a way as  t o  produce a constant volt-second 

The integrator portion of the 

The inductor then becomes, along with its capacitor, a means of 
The switching t rans is tor  "chops" the DC at the 

in t eg ra l  into the integrator.  

Implementation of the  inversion function is re la t ive ly  simple. 
0 

Figure 26 illustrates three versions of inverters,  two with transformers and one 

without. 

unmodulated drive fo r  the pre-regulator. 

t o  base of the inverter t rans is tor  w i l l  reduce dr ive source power and improve 

efficiency. 

The inverter  can obtain its drive from the same source that produces the 

Some current feedback from col lector  

Conversion can take various forms, as  shown i n  Figure 2'7. When the 

secondary p e r  i s  DC, the inverter output must be rectified and filtered. 

designs of Figure 27 show i s o h t i a n  transformtrs such as would be needed with 

those source options shown as (a) and (c) of Figure 26, but the secondary f o r  each 

converter i n  Figure 2'7 can be the secondary of (b) i n  Figure 26. 

The 

D e t a i l s  of Implementation. FYobably the heaviest s ingle  part i n  the 

power conditioning equipaent i s  the inverter  transformer o r  the  converter 

transformer (Figure 26 (a) and 

windings are used for the  full  
(b) o r  Figure 27). 
switching cycle; for center-tapped windings, half 

However, not a l l  of the 
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are  dormant f o r  each half cycle. 

winding that would be completely u t i l i zed  i f  both output currents were equal, 

and i s  rrtilized t o  the extent that this i s  the case. 

inverter  transformer has a 100 percent ut i l izat ion factor. 

Figure 27 (a) shows a shared secondary 

I n  Figure 26 (8) the 

The filter capacitors shown i n  Figures 25 and 27 are usually ceramic 

or  tantalumty-pes, with the tantalum type available i n  fo i l ,  soiid, or  w e t  

--I...- ~ ~ ~ d m s .  

they are i n  the same w e i g b t  range as transformers. 

given t o  system frequencies, since these capscitors tend t o  become inductive 

a t  frequencies i n  the megacycle range. 
output impedance at  high frequency, compensate a high-gain amplifier, or  suppress 

high-frequency camponents f o r  EMC (electromsqetic compatibility) reasons. 

Selection of' capacitors has a Significant effect  on weight, since 

Consideration must also be 

This makes it d i f f i cu l t  t o  achieve l o w  

The inductors sham i n  Figures 25 and 2'7 are the DC carrying types 

which make use of the air gap t o  store most of the energy w h i l e  leaving the 

core with sufficient permeabilityto act  as  an inductor toward AC components 

of energy. 
be eliminated i f  the AC waveform is square o r  nearly square. 

i n  applications with severe noise (EXC) er ripple requirements. 
taken with inductors a t  high frequencies, since they tend t o  become capacitive 

above one megacycle. 

since they weigh more than resistors,  low-value capacitors, transistors,  or 
diodes. 

I n  those cases where the inductors are shown as  optional they can 
They are needed 

C a r e  must be 

0 

Weight is also an important consideration i n  the i r  use, 

W i t h  regard t o  semiconductors, most high-reliabil i ty or  high-temperature 

applications c a l l  f o r  si l icon rather than germaniumtypes, even though s i l icon 
has a larger saturation voltage drop than does germanium. When semiconductors 
are used i n  switching modes, there i s  the usual I-V loss f o r  forward conduction 

and i n  addition a storage carr ier  effect ,  which causes the device t o  remain 

conducting in to  the next half cycle, a f t e r  the complementary diode o r  t rans is tor  

has turned on. 
can be significant and m y  be within an order of magnitude of the other losses. 

This resul ts  i n  a short c i rcu i t  f o r  a brief period. These losses 
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There are t i m e s  {hen the secondary poi e r  c i r cu i t s  must perform 
u i t h  bet tcr  than lIOr~Uic?l  ri ,pple or regulatian, o r  lover than average output 

inipct:;mcc r tuc!  t a  dynxnic loading (pulsed loads). 

itctivc f ' ilterin:~ must be used. i n  the outputs folloving those converter 
c i r cu i t s  sii%mi i n  Figure 2 7 .  

whcrc the d3~1ainic range of regulation is  not  too great. 

rcgu1 ?tor  funct im produces about one percent regulation t o  the inverter  
t ~ : i I i ~ f ' c j i * ~ ~ ~  seean,dar5cs fer Line I)C loadl m d  temperature variations combined. 

Tine dyn:mic loads are usually puiseci dem& i'oi- c-iii-rent -&iich sthezisff wndd 

produce significant voltage transients.  

may be used for wide range dynamic loads. 

h e n  this i s  nccssary, 

Series regulators, Figure 2.3 (a), nay be xsed 

IVormal2.y the pre- 

"he shunt regulator, Figure 28 (bj 

P,vnrnetric Data. The parametric data accumulated t o  date on power 
cmdit ioning equipnent r e l a t e s  almost en t i re ly  t o  DC-DC converters. 
following discussion w i l l  therefore cover power converters only, with riisciission 

of inverters  and transformer-rectifiers l e f t  t o  a subsequent report. 

Converters include an inversion function and a transformer-rectifier function, 

much of the technology i s  applicable t o  uni t s  performing those flrnctions alone. 

The 

Since DC-DC 

Table I X  summarizes the pertinent e l ec t r i ca l  data on the  converters 
It can be seen that included i n  the eight power systems under consideration. 

there  i s  a wide range of characterist ics,  corresponding t o  the  wide range of 

using equipment requirements previously noted. 

With regard t o  converter weight, packaging densi t ies  for  electronic component# 

of 0.030 t o  0.045 pounds/ cu. i n .  are being achieved; the t o t a l  weight of 

mechanical hardware ranges from 33 t o  100 percent of the w e i g h t  of the  electronic 
parts used i n  the unit ,  u i th  the average a b u t  50 percent. Operating temperature 
af fec ts  weight, since high temperature require more s t ruc tura l  mass t o  remove 

heat. 

The parameter of most interest fo r  this study i s  converter efficiency. 

Wl ight i n  turn i s  affected by efflciencyand switching frequency. 
the relationship of a l l  these parameters. 

Figure 29 shUuS 
It can be seen that: 
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o Efficiency increases with power level.  This results from 

the fact that there are certain fixed losses i n  a converter, 

and these naturally become a smaller percentage of the t o t a l  

as power is increased. 
increase a t  a slower rate than the power leve l  and thus also become 

smaller i n  proportion. 

I n  addition, the variable losses 

o Eigher switching frequencies result i n  considerable reduction of 

weight, but at the same t i m e  i n  lower efficiency. 

o High switching frequencies (100-200 KC) can be used at low parer 
levels  (up t o  10 watts), but should not be used a t  higher power 
levels because of the loss i n  efficiency associated with long 

switching time characterist ics of presently available power, 
switching t ransis tors .  The iip-per TractTcLl’r l i ro i t  for e 500 vstt 

power level, f o r  example, i s  seen t o  be a switching frequency of 
X:->O KC. 

0 As the figure shows, there i s  a maximum efficiency attainable f o r  any 

given parer level.  This is  shown more simply i n  Figure 30, a curve of maximum 
efficiency versus power leve l  fo r  a typical  28 V DC-DC converter. As would be 

expected the efficiency increases with power level, but reaches a maximurn at 

about 89 percent. 
a t t r ibutable  t o  I-V losses i n  t h e  p o w e r  switches, rec t i f ie rs ,  and magnetic 

components as  w e l l  as t o  the f ixedlosses .  Some increase i n  maximum efficiency 
may be attainable f o r  low-power units by design innovations, and i n  high-power 

un i t s  by incorporating regulation i n  the inversion s ta te .  

This re f lec ts  the minimum attainable losses, which are 

Efficiency i s  affected, i n  part, by the magnitude and number of outputs. 

For single outputs other than 28 VDC, an efficiency correction factor, Figure 31, 
must be applied t o  compensate f o r  rect i f icat ion losses. 

the efficiency correction factor  (Em) i s  greater than unity w h i l e  a t  l o w  voltages 
the correction factor  is substantially less than unity due t o  the  high rect i f icat ion 

losses. For multiple outputs, the correction factor  w i l l  also be uti l ized. An 
example calculation w i l l  be instnrctive. 

A t  high voltage output, 

The problem i s  t o  determine the efl iciency 
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of n 30 watt converter with five outputs as  follows: 

1. +15 a t  5 :.J 

4. +W a t  8 W 

5. +3 at  2 w 

The efficiency of a 30 w a t t  converter a t  10 KC switching rate from 

F i p r e  ‘23, i s  7%. 
averall efficiency correction factor (OECF) taking in to  accamt the respective 

power outputs and t h e  ZCF’s. 

The corrected efficiency is obtained by determining an 

Efficiency Correction 
output Factor (ECF) 

+15 098 
-15 -98 
+28 1 .o 
+50 1.01 

+3 835 

OECF = . c ) t j ( 5 )  + .% (5) +1.0 (IO) +1.01 (8) + .835 (2) 
30 

OFXF = .985 
Corrected Efficiency = 79’6 (.985) = 77.74 

For E / D C  converters designed t o  operate a t  a particular input voltage 
when connected t o  a variable bus, efficiency decreases with higher input voltages. 

For a nominal 50 VDC input, converter efficiencies may increase approximately Z$ 
ref lect ing the lower losses due t o  lower input current as compared t o  28 VDC design. 

Voltages significantly greater than 50-60 vol t s  will compromise the collector 

voltage breakdown ratings f o r  available power t ransis tors .  
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Standardization. Spacecraft requirements sometimes place undesirable 
physical and e lec t r ica l  performance constraints on the power condittoning 

equipment. Such factors as multiple output voltages, power proportioned f o r  
each output, t ight  regulation, low ripple, current limiting, and large input 

voltage range, cause the power conditioning equipnent design t o  be less than 
optimum. 
standardization. 

a re  being made within TIW and presumably other companies. 

such as resis tors ,  capacitors, t ransis tors ,  diodes, transformers, and inductors 

are ssseiiibled ifit0 peckages c d l e d  niddes, ~ h i c h  a re  i ; ~ &  aczorcEng to P a c t i m  
and sub-function. These modules of cordwood and welded wire construction 

contained i n  a protective p l a s t i c  housing reduce the number of vis ible  nodes 

(terminals) and allow standardization. The finished "standard" m o d u l e  then 
becomes an en t i t y  which can be combined with four or  more other modules t o  

m k e  R convertver or  inverter .  These modules m y  be used unchanged i n  other 
applications, o r  with slight modification such as a change i n  r e s i s to r  value. 

A l l  of these constraints l i m i t  serious design attempts tar& 
However, despite this situation, attempts toward standardization 

Discrete collIponents 

"he use of standard nodules of this type helps t o  reduce costs, 
improve schedules, improve r e l i ab i l i t y  and minimize electro-magnetic interference. 
The module approach yields rtn orderly arrangement of parts more readily producible 

w i t h  good p c k a d n g  densi t ies  ( .035 t o  .05 lbs/cu. in . ) .  

3 .3 .3  Batteries 

Electrical  power systems f o r  satellites o r  spacecraft basically have 

three choices of ba t te ry types  - s i lver  zinc, s i l v e r  cadmium, and nickel cadmium. 

Becausc the state-of-the-art of sealed secondary ( rechargeable) s i l ve r  zinc 
batteries is not as advanced a s  the other two types, s i l ve r  zinc batteries are not 

used for  long l i f e  cycle operation. The primary (one shot) s i l v e r  zinc is  

predominately used for short missions not reauiring charge and discharge, and f o r  

peak power or emergency requirements on those vehicles having another source of 

continuous e l ec t r i ca l  parer. 
longest. !bwever, t he  s i l ve r  cadmium battery i s  being used more and more f o r  

two reasons: 

i n  nature l i k e  tire nickel cadmium. 

mapet ic  f ie ld ,  even when not i n  use. The magnitude and direction of this f ie ld  

var ies  as a function of i t s  previous his tory of charge and discharge conditions. 

The nickel cadmium battery has been i n  use the 

(1) it has a higher energy per uni t  weight, and (2) it i s  not magnetic 
The nickel cadmium battery has a residual 

0 
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To date, the nickel cadmium battery has demonstrated a better cycle l i fe ,  but 
a steady improvement of s i lver  cadmium performance i s  being realized. 

Design data fo r  the si lver cadmium batteries i s  presented i n  

Figures 32 through 41. 
form such that reasonable comparison can be made with other battery types. 

Figure 32 presents data on cycle l ife as  accumulated from variars  test Drograms,  

under varying conditions. 

%A p&de the ?rrcrst- reliable d e s l g ~  data, 

available information on Yardney cells.  

Yardney are based on a C / l 5  charge rate and C/10 discharge r a t e  a t  room temperature. 
I n  the following discussion of s i lver  cadmium batteries,  the c e l l  capacity ratings 

have been re-defined t o  C/12 and C/4 charge and discharge rates, respectively. 

re-definition of rates de-rated the battery capacities t o  more r ea l i s t i c ly  agree w i t h  

Most of these data have been reduced t o  parametric 

Sufficient tests have not been completed and documented 
Most of the data p i n t s  were derived from 

The c e l l  capacity ratings as defined by 

This 

satellite applications which use only the higher rates.  The c r i t e r i a  for  "failure" 

is defined as an occurrence of a catastrophic fa i lure  such as a cel l  open o r  short 

condition - or  the inabi l i ty  of the bat tery (not ce l l )  t o  supply the required (IXID) 

depth-of-discharge i n  a given cycle. 
0 

Figure 33 provides packaged battery weight per c e l l  as a function of rated 

capacity. 

t h i s  area. 
as 20$ appears reasonable. The plot of temperature vs. ampere-hour efficiency i n  

Figure 34, applies t o  any state of charge within the operating l i fe  of the battery. 
The maximum achievable input capacity i s  a function of the charge rate and temperature 

as sham i n  Figure 35, i n  terms of the end of l i f e  capacity. 

A packaging factor of 304 38s used since %he f e w  existing desifgs fa l l  i n  

However, as larger bat ter ies  are manufactured and used, a factor a s  low 

Output capacity varies with temperature, charge rate ,  and discharge rate. 

Figures 36 and 37 present the family of these curves i n  terms of ( C e )  end of l i f e  

capacity. 

several temperatures appear on Figures 38 and 39. 
r a t e  and temperature on energy efficiency and w e i & t  are shown i n  Figures 40 and 41. 

k s in i i ln r  se t  of parmetric design data are  presented i n  Figures 42 through 

The charge and discharge voltage curves as a function of capacity and a t  

The relationships of discharge 

54, fo r  the nickel cadmium batteries. 
history, the data i s  mare refined a d  lends i tself  t3 a systemtic  desi= q y o a c h .  

h example of' 3 battery dcsign w l l l  be used t o  5-emonstratc the use of these curves. 

Because this tme of ba t te ry  nas 8 longer 
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Example: 

From the spacecraft mission and o rb i t a l  considerations the 

following requirements are given: 

Life lo00 cycles 

Step 

s t ep  

Load Capacity (ed) at end of l i f e  

Discharge current (Id) 3.0 Amps 

Charge current ( I ~ )  1.5 Amps 

Charge temperature (Tc) 96O F 
(a): A s s u m e  id = 0.5 -&- AmS = c ) * 5  l/hr 

3AH 

.-no - 
iiischarge Temperature (T 1 2" p d 

T T 

Define: id = - 
e C 

I c ic = - 
'e 

'd = 

ce = 

I 

'e 

'r = 

Discharge capacity a t  end of 

l i f e ' f o r  a given charge current 

density (i,) and smpere-hour 

efficiency (T) . 
Maximum available capacity at  

end of l i f e  f o r  a given charge 
current density (i,) and discharge 

current density (id) . 
Maximum available capacity at 

end of l i fe  f o r  a given optimum 
charge and discharge current. 

Eaanufacturers ampere-hour rated 
capacity. 

(b) : From Figure 42, at  id = 0.5 and Td = 5OoF. 

Ce/Ck = 0.825 

(Before any derating occurs, Ce Cd =: 3 AH.) 
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Figures 43 through 47 are a set of efficiency curves for various 

charge temperatures. 

step (e): 

Step (d) : 

Step (e) : 

Step (f): 

Step (h) : 

Step (i): 

~ ~ s u m e  a charge efficiency of a. 
From Figure 46 having a charge temperature of 96% - 
read cd/’ce = 0.83> for 3 = YW$, ic 

L e t  a new Cd = 3.636 AH from the previous CC 

calculation. 

= 0 . 4 ~ 3  

ThenewC, = ‘d = 3.636 = 4.354 AH 
0.8350.855 

This should be the de-rated AH capacity required for 

these specific charge and discharge conditions. How- 

ever id = 0.5 was assumed. 

Examine id = 0.5 assumption. 
7 

= Id 3 A m s  - 0.689 
35 AH - e 

id C 

Thus, id # 
required. 

0.5 as assumed and a further iteration is 

Return to Figure 42 for id = 0.689 and Td = 5OoF. 

New ce/Ck = 0.800 

Calculate new ic 
T 

= 0.400 1.5 Amps I c ic = - % = 3.750 AH 

From Figure 46 again obtain a new Cd/Ce where 
10.400, v -  go$ ic 

Cd/C, = 0.830 
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- 3*750 = 4.518 AH ‘e - 0.830 
Step ( 3 ) :  Re-examine last value of id used 

t 

This id 4 0.689 last assumed. A f i r t h e r  i t e ra t ion  

is  required. 

Step (k): Return t o  Figure 42 for id = 0 . 6 4 ,  Td = 50’F 

New ce/c; = 0.805 

Step (1): Calculated new ic 

Step (m)  : From Figure 46, 

new Cd/Ce = 0.832 

Step (n) : Re-cxamining i assumption 
d 

This i s  close enough t o  assumed 
i = 0.664 

Theref ore: 

d 

Step (0) : From Figure 48, 

The depth of discharge ce/Cr fo r  1000 cycles i s  55%. 

Therefore the  rated capacity required t o  be instal led 

for  m i n i m  weight and maximum r e l i a b i l i t y  i s  

= 8.4 AH or  8 AII - 4.478 AtI 
cr - .55 
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Depth of Discharge - Fractional Capacity ("'Cr) 
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Step (p) : From Figure 49, the weight of packaged battery i s  

0.95 lbs per ce l l .  

determined by multiplying this number by the number 

of c e l l s  requi red  t o  m e e t  the system bus voltage. 

The battery t o t a l  weight i s  

Efficiency data as a function of temperature, current and state 

of charge are extrapolations of experimental data obtained at a single 

current Over a range of t q r a t u r e .  

upon. 

e r ror  as the deviation from C/3 increases i n  e i ther  direction. 

e i the r  f o r  conversatism or optimism has been applied. 

Eqerimental  data at C/2 m y  be relied 

D a t a  a t  all other currents should be expected t o  show increasing 

No weighting, 

Cycling l i fe  versus depth of discharge data are those extracted 

from NASA - SP 5004, "Space Batteries", after eliminating the e f fec ts  of 

discharge at  l o w  temperatures. 

confounded with, and are inseparable from, the  effects of current (which varies 

with depths of discharge i n  a 90 minute orbi t  cycle), when combined with 

earlier steps i n  the analysis, the result i s  a conservative approach. 

Since these data already are s t a t i s t i c a l l y  a 

Figures 51 through 54 show the e f fec t  that can be accomplished 

with a nickel cadmium bat tery by revitalization treatments. 

res tores  the bat tery t o  near its original capacity after an extended period 

of cycling. 

t o  or less than the original cycle life of the battery, mission life of the 

bat tery can be extended significantly. 

not established any l i m i t  t o  the  number of t i m e s  a nickel cadmium battery 

can be r e v i t a l i z e d  and thereby multiply i t s  original cycle l i f e  by t h e  number 

of revi ta l izat ion periods. This treatment has been used on some of the later 

In effect, this 

By se t t ing  the  period between revitalization treatments equal 

The limited data now available has 

TRW spacecraft power system designs. 
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5.4.4 PoTje;’ Dis-tribut - 0 ~  

Power distribution e q u i p m t  i s  usually c lassi f ied as harnesses, 

c i r cu i t  protection o r  fuses, terminal. blocks, power switching, and under or  

over voltage protection and isolation diodes. 

Power loss, weight and wire gauge f o r  the harnesses used on f ive  

of +,he emsidere6 prcrgrms is summarized In Table X. I 

zation of component parts f o r  harnesses has already been accomplished. 

f o r  changing of the wire s izes  t o  reduce losses, very l i t t l e  contribution 

can be made by the  harness area t o  the maximum ut i l iza t ion  of power. 

present, these power losses are very minimal. 

Considerable standardi- 

Ekcept 

A t  

C i r c u i t  protection hers been RccomFlished by the use of fuses i n  

a l l  known vehicles t o  date. 
2 function of I t. 

These devices operate i n  a l inear  m o d e  as a 

O t h e r  devices known as current limiters, which are non- 

l inear  with 1% have been used i n  special cases requiring only current 

limiting. 

The use of relays f o r  switching power or transferring functions 

has been the established procedure so far. 

proposed and used on two programs - Pioneer and 2029. 

investigated have used relays. 

disadvantages as surmnsrized below. 

Solid state switches have been 

A l l  other programs 

These devices each have advantages and 

Advantages 

Relays : Low power consumption; not susceptable t o  

radiation damage; essent ia l ly  unlimited current 

car ry ing  capacity; w e l l  advanced i n  the state-of- 

the-art; and reasonably high r e l i ab i l i t y .  
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TABU X 

Program 

Harness Characteristics 

Voltage Drop 
* H 

Primary Se coniiary Weight wi ct 
Paver Fwwer lb . cauge 

* 
Primary p o w e r  losses are fro= primarjr sources to the users*equipmmt. 

- ** 
Secondary paver losses are from secondary sources to the users*equipment. 
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Solid State fldtch: L i g h t  w e i g h t ;  very compact; no magnetic 

properties; no moving parts; and predicted 

high re l iab i l i ty .  

Disadvantages 

R e l a y s :  Poor magnetic f ield properties; high 

volume; high w e i g h t ;  and subject t o  contact 

-LILA-- b&uUUG.& ---*-a-- GaUOAAAe -tn+a-di Z l l Y b A A  Y p V & Y Y Y  nnc ona/C?r -*- zcispe 

Solid State Switches: Subject i~ radiation damage; limited current 

carrying capacity; power consumption pro- 

portional t o  current carried; and re lat ively 

new i n  developent. 

For the purpose of this study, it would appear that characterist ics 

other than power consuuxption may dictate  the selection of switching device. 

A l l  other things being equal, solid state switches w o u l d  be used fo r  low 

power circui ts ,  and relays for  high power c i rcu i t s  i n  order t o  obtain 

maximum power system efficiency. 

0 

Under and mer voltage protection has been accomplished by two 

methods i n  the spacecrafts surveyed. 

used unijunction t ransis tors .  

the d i f fe ren t ia l  amplifier method. The later method is superior t o  using a 

unijunction, but has only recently been Fully developed. 

lower parer consumption, narrower hysteresis band width, matrix lo@ outputs, 

be t te r  temperature range stabi l i ty ,  end low DC voltage signals which can drive 

the  power svltching devices. 

The A b l e  V, Vela and OGO vehicles have 

The Pioneer, Comsat and 2029 program are using 

Its advantages are: 

From a power efficiency point of View, the state-of-the-art i n  

mer/under voltage control i s  moving in the correct direction. A t  this 

t i m e ,  no better choice is available. 
e 
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